skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Reji, Varghese"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract We report on the discovery of a transiting giant planet around the 3500 K M3-dwarf star TOI-6383A located 172 pc from Earth. It was detected by the Transiting Exoplanet Survey Satellite and confirmed by a combination of ground-based follow-up photometry and precise radial velocity measurements. This planet has an orbital period of ∼1.791 days, a mass of 1.040 ± 0.094MJ, and a radius of 1.008 0.033 + 0.036 R J , resulting in a mean bulk density of 1.26 0.17 + 0.18 g cm−3. TOI-6383A has an M dwarf companion star, TOI-6383B, which has a stellar effective temperature ofTeff∼ 3100 K and a projected orbital separation of 3126 au. TOI-6383A is a low-mass dwarf star hosting a giant planet and is an intriguing object for planetary evolution studies due to its high planet-to-star mass ratio. This discovery is part of the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) Survey, intending to provide robust and accurate estimates of the occurrence of GEMS and the statistics on their physical and orbital parameters. This paper presents an interesting addition to the small number of confirmed GEMS, particularly notable since its formation necessitates massive, dust-rich protoplanetary discs and high accretion efficiency (>10%). 
    more » « less
  2. Abstract We present the confirmation of TOI-5573 b, a Saturn-sized exoplanet on an 8.79 days orbit around an early M dwarf (3790 K, 0.59R, 0.61M, 12.30 Jmag). TOI-5573 b has a mass of 11 2 19 + 18 M(0.35 ± 0.06MJup) and a radius of 9.75 ± 0.47R(0.87 ± 0.04RJup), resulting in a density of 0.6 6 0.13 + 0.16 g cm−3, akin to that of Saturn. The planet was initially discovered by the Transiting Exoplanet Survey Satellite (TESS) and confirmed using a combination of 11 transits from four TESS Sectors (20, 21, 47, and 74), ground-based photometry from the Red Buttes Observatory, and high-precision radial velocity data from the Habitable-zone Planet Finder and NN-EXPLORE Exoplanet Investigations with Doppler spectrographs, achieving a 5σprecision on the planet’s mass. TOI-5573 b is one of the coolest Saturn-like exoplanets discovered around an M-dwarf, with an equilibrium temperature of only 528 ± 10 K, making it a valuable target for atmospheric characterization. Saturn-like exoplanets around M dwarfs likely form through core accretion, with increased disk opacity slowing gas accretion and limiting their mass. The host star’s supersolar metallicity supports core accretion, but uncertainties in M-dwarf metallicity estimates complicate definitive conclusions. Compared to other GEMS (Giant Exoplanets around M-dwarf Stars) orbiting metal-rich stars, TOI-5573 b aligns with the observed pattern that giant planets preferentially form around M-dwarfs with supersolar metallicity. Further high-resolution spectroscopic observations are needed to explore the role of stellar metallicity in shaping the formation and properties of giant exoplanets like TOI-5573 b. 
    more » « less
    Free, publicly-accessible full text available June 26, 2026
  3. Abstract We present the discovery of a low-density planet orbiting the high-metallicity early M-dwarf TOI-5688 A b. This planet was characterized as part of the search for transiting giant planets (R ≳ 8R) through the Searching for Giant Exoplanets around M-dwarf Stars (GEMS) survey. The planet was discovered with the Transiting Exoplanet Survey Satellite, and characterized with ground-based transits from Red Buttes Observatory, the Table Mountain Observatory of Pomona College, and radial velocity (RV) measurements with the Habitable-Zone Planet Finder on the 10 m Hobby Eberly Telescope and NEID on the WIYN 3.5 m telescope. From the joint fit of transit and RV data, we measure a planetary mass and radius of 124 ± 24M(0.39 ± 0.07MJ) and 10.4 ± 0.7R(0.92 ± 0.06RJ), respectively. The spectroscopic and photometric analysis of the host star TOI-5688 A shows that it is a metal-rich ([Fe/H] = 0.47 ± 0.16 dex) M2V star, favoring the core-accretion formation pathway as the likely formation scenario for this planet. Additionally, Gaia astrometry suggests the presence of a wide-separation binary companion, TOI-5688 B, which has a projected separation of ~5″ (1110 au) and is an M4V, making TOI-5688 A b part of the growing number of GEMS in wide-separation binary systems. 
    more » « less
    Free, publicly-accessible full text available March 3, 2026
  4. Abstract Gaia astrometry of nearby stars is precise enough to detect the tiny displacements induced by substellar companions, but radial velocity (RV) data are needed for definitive confirmation. Here we present RV follow-up observations of 28 M and K stars with candidate astrometric substellar companions, which led to the confirmation of two systems, Gaia-4b and Gaia-5b, identification of five systems that are single lined but require additional data to confirm as substellar companions, and the refutation of 21 systems as stellar binaries. Gaia-4b is a massive planet (M = 11.8 ± 0.7MJ) in aP = 571.3 ± 1.4 day orbit with a projected semimajor axisa0 = 0.312 ± 0.040 mas orbiting a 0.644 ± 0.02Mstar. Gaia-5b is a brown dwarf (M = 20.9 ± 0.5MJ) in aP = 358.62 ± 0.20 days eccentrice = 0.6423 ± 0.0026 orbit with a projected angular semimajor axis ofa0 = 0.947 ± 0.038 mas around a 0.34 ± 0.03Mstar. Gaia-4b is one of the first exoplanets discovered via the astrometric technique, and is one of the most massive planets known to orbit a low-mass star. 
    more » « less
    Free, publicly-accessible full text available February 3, 2026
  5. Abstract Transiting giant exoplanets around M-dwarf stars (GEMS) are rare, owing to the low-mass host stars. However, the all-sky coverage of TESS has enabled the detection of an increasingly large number of them to enable statistical surveys like the Searching for GEMS survey. As part of this endeavor, we describe the observations of six transiting giant planets, which include precise mass measurements for two GEMS (K2-419Ab, TOI-6034b) and statistical validation for four systems, which includes validation and mass upper limits for three of them (TOI-5218b, TOI-5616b, TOI-5634Ab), while the fourth one—TOI-5414b is classified as a “likely planet.” Our observations include radial velocities from the Habitable-zone Planet Finder on the Hobby–Eberly Telescope, and MAROON-X on Gemini-North, along with photometry and high-contrast imaging from multiple ground-based facilities. In addition to TESS photometry, K2-419Ab was also observed and statistically validated as part of the K2 mission in Campaigns 5 and 18, which provide precise orbital and planetary constraints despite the faint host star and long orbital period of ∼20.4 days. With an equilibrium temperature of only 380 K, K2-419Ab is one of the coolest known well-characterized transiting planets. TOI-6034 has a late F-type companion about 40″ away, making it the first GEMS host star to have an earlier main-sequence binary companion. These confirmations add to the existing small sample of confirmed transiting GEMS. 
    more » « less